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Imaging the Biomechanical Properties of Articular Cartilage 
Peter A. Hardy, University of Kentucky 

 
Function: The primary function of articular cartilage is mechanical: under load it must deform to 
distribute the load over a larger area so as to minimize stress in the underlying bone.  In addition, 
articular cartilage must provide a very low friction surface for gliding when the joint is flexed so 
that articulating joints move freely. Lastly, it must carry out these two functions for a lifetime of 
use. Understanding the biomechanics of articular cartilage is important as it provides insight into 
the deterioration occurring in osteoarthritis and other degenerative diseases of joints.   
 
Organization and Composition. Articular cartilage is neither vascularized nor enervated. 
Chondrocytes represent a small fraction of cartilage volume as the vast majority of the tissue 
consists of extracellular matrix produced by the chondrocytes. This matrix is primarily 
comprised of two types of molecules: collagen and glycosaminoglycan (1). Collagen in the type 
II form is organized into fibrils which form larger diameter fibers. The fibers are anchored in the 
bone and stretch upwards arching throughout the cartilage layer. Proteoglycans are large 
molecular weight macromolecules consisting of a protein backbone (hyaluranan) with numerous 
glycosaminoglycans (keratin- and chondroitin- sulphate) radiating outward from it much the way 
the bristles on a bottle brush radiate out along the length of the brush. These glycosaminoglycans 
are negatively charged and attract sodium and hence water so that the interstitial space in the 
cartilage is highly hydrated (~75%). Collagen and proteoglycans represents respectively 
approximately 75% and 10-25% by dry weight of the tissue. There are large spatial variations in 
the architecture and composition of articular cartilage. Traditionally, articular cartilage is divided 
into three zones or layers: the deep zone (DZ) adjacent to the cortical bone, the middle zone 
(MZ) comprising the majority of the thickness of the cartilage, and a very narrow zone near the 
surface called the superficial zone (SZ)(2). In the DZ the collagen fibrils radiate perpendicularly 
upward from the cortical surface. In the MZ the orientation is more random as the collagen 
begins to bend away from the perpendicular.  At the SZ the fibrils are oriented parallel to the 
surface.  There is a tendency for the majority of the fibers to run in the direction of greatest 
stress. The concentration of PG also varies spatially being greatest in the MZ and least at the SZ. 
The hydration level is least (40-60%) in the DZ and rises with height in the cartilage to 
approximately 85% at the surface. That the tissue is highly hydrated gives it a resiliency to 
compression.   
 
Basic Mechanical Properties: Extensive tensile and compressive studies have been carried out on 
articular cartilage from various species, at various ages of animal, and in various conditions. The 
tensile measurements show that the collagen fibers contribute most significantly to the tensile 
properties of the tissue. For example, degrading the bonds between collagen fibrils with elastase 
reduces the tensile modulus by over 90%. The tensile modulus is on the order of 5 – 25 MPa: 
higher at the surface than deeper and higher in weight bearing regions than elsewhere. 
Measurements of the compressive modulus of the tissue reveal that the PG contributes most 
significantly.  There is an equilibrium between the tensile strain in the fibers and the hydrostatic 
pressure induced by the high concentration of water (3). The initiation of osteoarthritis (OA) 
leads to breaking of the collagen fibrils resulting in swelling of the tissue because the 
constraining effect of the collagen has been removed. This condition is detectable as a softening 
of the tissue which orthopedic surgeons detect by prodding the surface.  Because of the 
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preferential orientation of the collagen parallel to the surface in the SZ the tensile properties here 
are higher than in the MZ. The tensile modulus can drop by an order of magnitude with disease. 
Compression of cartilage leads to exudation and redistribution of water through the extracellular 
matrix. The viscous drag caused by the porous matrix leads to creep and stress relaxation (4). 
Under an oscillating load the viscous drag of fluid redistribution leads to dissipation of energy.   
 
Non-imaging Investigations of Cartilage Biomechanics:  Traditional ways of investigating the 
biomechanical properties of articular cartilage. Material properties of articular cartilage have, for 
the most part, been investigated on ex vivo samples of cartilage  (5). In some cases, samples of 
cartilage were excised from the bone and in other cases the measurement were made on intact 
joints or by compressing cored samples.  The tensile modulus of cartilage (E) can be measured 
from the slope of the stress (Force/Area) versus strain (ε=∆L/L0) curve (E=σ/ε) as shown in 
figure 1.  The compressive modulus (HA) is obtainable from indentation tests performed with a 
permeable indenter which allows fluid to flow out of the cartilage and through the indenter.  
Theoretically, the mechanical properties of articular cartilage are well described by a multi-
phasic viscoelastic model developed by Van Mow and others (2). This model describes the 
complex interaction of PGs, collagen fibers and viscous flow of the interstitial fluid to develop 
cartilage’s impressive biomechanical features.  
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Figure 1. (left) Measurement of the tensile modulus from the stress vs strain curve. Figure 2 
(right) method of carrying out indentation test to measure the compressive modulus of articular 
cartilage.  
 
Imaging Method of Measuring Biomechanical Features: In one approach, MR images of 
cartilage have been acquired to measure various MR properties such as T1, T2 or magnetization 
transfer and these properties were related to mechanical measurements acquired using standard 
approaches (6,7). Alternatively, multiple methods have been developed employing MR imaging 
to measure the biomechanical properties of articular cartilage. Ekstein et al developed a 
pneumatic device to compress the patella against the trochlear cartilage in a cadaver knee (8,9). 
With this device they measured the cartilage deformation as a function of time. A few groups 
have developed apparatus and imaging techniques to measure the biomechanical properties of 
excised samples.  Rubenstein et al imaged excised plugs from bovine knees under compression 
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to 4 MPa. They identified the layers in the cartilage and their transformation under compression 
both with the load and duration of compression (10). Changes in the appearance of the zones 
were attributed to interstitial fluid redistribution and collagen fiber reorientation. The technique 
was useful in understanding the origin of HA at different stages of compression. Kaufman et al 
developed a pneumatic device to compress samples of articular cartilage and image them under 
compression. They measured the creep deformation of healthy and trypsin digested bovine calf 
articular cartilage samples as a function of time and found the creep was explained by a 
viscoelastic model(11). Neu and Hull imaged cartilage samples while cyclically loading them. 
They visualized the compression using tagging methods which give a direct visualization of the 
tissue deformation (12).  Hardy et al also made measurements on excised bovine cartilage 
samples. They used a phase contrast method to measure the local displacement of cartilage under 
cyclic loading. The method is very sensitive to small deformations and can visualize strain over 
the entire sample(13). Both the methods of Neu and Hardy require repeated loading of the 
sample and the measurement of parameters once a steady state of load and compression has 
developed. Measurements of the elastic modulus of cartilage have also been made with the 
harmonic elastographic method (14). The large HA of cartilage compared to soft tissue means the 
wavelength of the shear waves is much longer than the dimensions of the sample for typical 
elastographic frequencies of 100 – 500 Hz. To overcome this Lopez et al at Mayo constructed a 
dedicated gradient system which could generate large amplitude gradients (>100 mT/m) and 
oscillate them in excess of 1 kHz (15). However, using this apparatus they obtained 
measurements of the shear modulus similar to those obtained with other techniques.  
 
Besides MR imaging a variety of other imaging techniques have been employed to measure 
mechanical properties of articular cartilage. Ultrasound techniques have been employed to 
measure the surface roughness and the deformation of cartilage under load. Kiviranta & Jurvelin 
have developed an orthroscopic ultrasound probe to measure the deformation and local 
mechanical properties of articular cartilage during orthroscopic surgery (7,11,16). This technique 
is especially interesting because it could be applied clinically although with specialized 
equipment. Even, atomic force microscopy has been recruited to study this interesting tissue. 
Stolz et al used AFM to examine the dynamic elastic modulus of porcine femoral articular 
cartilage at micro- and nano-meter scales and demonstrated variation in the dynamic elastic 
modulus with scale and with enzymatic degradation of collagen and proteoglycan moieties (16).  
 
Conclusion: The mechanical properties of articular cartilage vary spatially. Thus measurements 
on intact samples will be aggregate measurements and will obscure the contributions from the 
individual layers which give cartilage its complex biomechanical behavior. To measure the 
properties in the individual layers by excising specific sections of tissue distorts the measurement 
because the collagen fibrils are severed and because new surfaces not present in the intact tissue 
become available for exudation of interstitial fluid. MR imaging provides several advantages for 
studying the biomechanical properties of tissue. MRI provides detailed measurements of the 
strain throughout a sample. This can be very important for understanding the contribution of 
each zone to the biomechanical properties of the intact tissue. In addition, it may be feasible to 
extend the techniques so that measurements might be made in vivo allowing the measurement of 
the mechanical properties of diseased tissue as a function of the course of the disease or with 
treatment. MRI is the ideal format to realize this tantalizing possibility.
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